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ABSTRACT

Let us consider a linear program with several
objective functions. The traditional approach
has been either to ''trade of f'"' by weighting each
function, or if a ''trade off' vector cannot be
provided to ignore all but the most significant.
We are interested in classes of programs whose
members possess some common characteristics.
Examples are sequences of production, refining,
inventory problems over time at one installation.
If sufficient conditions exist an estimate of

a ''trade-off’' vector can be made. This estimate
improves over the sequence.

A set X* exists which contains the solutions
obtained by optimizing with respect to all
nonnegative combinations of objective functions.
A decision maker is not indifferent to these
solutions but can characterize preferred solutions.
A method is presented whereby he can direct 3
finite sequence of solutions, (x.), over X"
towards a preferred solution. As the estimate
of the ''trade-off'' vector improves, the expected
length of the sequence (x.) diminishes, and
the efficiency of solution increases.




1. Introduction

In this paper we will investigate linear programs with more than one

objective function:

4

(1) Objective function z
subject to Ax =b
x>0
where 2z is a p-vector
X an n-vector
b an m-vector
Q a pxn matrix = (c],..,ck,..,cpf

A an nxm matrix.

We will definie a preferred set S such that only if x is in S will the
objective be satisfied. Under certain conditions a semipositive linear transformation
(A) on =z ca. be made such that AQx will be minimized and the minimizer xo
will be in S . We will define a set Z of weakly undominated 2z and show
that under arbitrary A\

min AQx and z=Qx , 2 ¢ 2

x

will be attained by the same x . Also for any x] such that Qxl 1S not in
A Qxl can be strictly decreased to a point sz which is in Z . Hence the

simplex method will always yield points in Z as optimal basic feasible solutions.

Having established that arbitrary A will produce an extreme point x from
a set of extreme points which also contains a preferred extreme point (assuming
hopefully that S contains an extreme point!) we will find a 5 which will
yield the desired x in S . For this we make certain assumptions, in particular

that ) is statistically estimable. If an immediate solution is not found an



algorithm is used to search for the preferred extreme point while minimizing

the squared deviation of )\ from its estimate. .

The assumption that )\ is estimable is not unrealistic if the approach
taken in this paper is applied to a class of problems with certain similarities,
for example: production planning over sequential periods where decisions are

made at each period.

2. The Presentation of the Problem.

The objectives of many linear programs can be defined adequately only as
vector functions. For example, in addition to minimizing cost, a decision
maker might also wish to minimize execution time of a project. or to maximize

employment, etc., or any combination of these.

Suppose that there exist p obiective functions z, = ckx, k=1,. . .,p , to
a linear program subject to the constraint x ¢ T where T = {xIAx =b, x>0, xe¢ Rn}.
We will assume throughout this paper that T is nonempty and bounded. In general

o . o ko . . +
no x €T exists such that z  =cx isan optimum for all k . We construct
the multiple objective vector function 2z = (zl,. SEET SRR .,zp) e RP . After
we exclude the case just mentioned, it is obvious that z cannot be minimized.
Although other approaches can no doubt be taken, it seems both legitimate and

consistent, since the subject is linear programming, to transform 2z to a

scalar function which lends itself to minimization.

We define a pair of both physical and mathematical significance: the decision
maker (DM) and the linear program problem solver (LP) . First, mathematically,
DM is a function from Rp to R with value Az transforming the components
of z by semipositive linear combinations to a scalar objective function. LP

is a correspondence fron R to T : given a real valued linear objective function

toptimum is used to mean maximum or minimum. In subsequent sections the minimum
problem only is treated.

0 — - ————a——— o



OM(z) , x* e LP(DM) ¢ T such that DM is minimized. We call such xi an
optimal solution. |If the decision maker is satisfied with some optimal solution
and terminates the problem, the solution is defined to be preferred. If he is
unsatisfied but no feasible optimal solution satisfies him more, then the solution

8 +
is almost preferred. tearly, the latter definition implies that:

Given the existence of one of the solutions,
either a preferred solution or an almost

preferred soluticn exists, but not both.

We shall prove in Section 4 that under certain conditions one of these solutions
does indeed exist. A solution which is either preferred or almost preferred
will be abbreviated to a POAP solution. No implication has been made as to the

uniqueness of any solution, only to the uniqueness of a set of solutions.

Secondly, physically, the problem thus far stated (1) can be decomposed
between DM and LP . We can consider that DM generates by some means a
vector of weights by which he constructs a linear combination of objective
functions. He has then produced a linear program for LP to solve. LP ,
characteristically a computer, can produce an optimal feasible solution by

conventional linear programming techniques.

+The concept ''satisfied'' is unmathematical intuitively and undefined explicitly.
In the light of the assumption DM2 appearing at the end of the section we can
define the following:

(i) DM is satisfied if he does not specify any vector d , given x .
(ii) DM is unsatisfied if he specifies some vector d , given x .
(iii) DM is unsatisfied but no x' satisfies him more if he specifies some
vector d , given x ; but no x' exists such that d(x',S) < d(x,S) .

Both the decision maker and the decision maker function will be called DM for
notational simplicity. Similarly, both the linear program problem solver and
its correspondence will be called LP . No ambiguity will occur.




(Recall that T is nonempty and bounded.) DM now evaluates the solution.
If he is satisfied he terminates the problem; otherwise he tries a new vector

and sends the data back to LP .

Suppose a common unit could be established in which the value of z, would
be expressed. Then, in the above example, DM could assign @y units of value
to one unit of cost, oy units of value to one unit of execution time, etc.,
and all the components would be transformed to a unique additive measure
in units of value, p = 'z , where o is well defined and constant. We shall
require that A be normalized so DM(z) = o'z/||al| , which would then be
completely determined. The problem would then reduce to a conventional linear

program. We will assume that the decision maker cannot establish such a unit

of value.

We can now define (1) more explicitly:

(2) Find (x, DM) , x € T , DM ¢ <[z, }>'" such that x ¢ LP(OM) and x POAP .

Equivalently:
(2') min DM = 2Qx
x
subject to Ax = b
x>0
X .bOAP

P
for each A >0 ,2% A = |
k=1

where Q = (c],. . .,ck,. Lol Lt

*”For each )' seems to imply that the set of A is at most countable, which is
not true. However in Section 6 we will show tha* there exist a finite number of
sets A1 , and any X\ € Ai will generate the same solution set {x} as any

A e A - Thus ''for each )' is to be interpreted ''for any A from each Aip

ﬂ”<{zk}>“ reads ''the convex hull of the set of all z, .




We will approach (2') eventually as a two stage problem: firstly, for some 1 ,
minimizing DM ; secondly, determ:.ning the given solution's POAP properties,
and revising X if necessary. Call then the first stage, i.e. (2'), neglecting

the x POAP condition: (2'').

In Section 3 we will prove that solutions to (2'') exist under certain

conditions, and that the simplex method will find a subset of these solutions.

The method proposed for finding a solution has little practical significance
for a single problem, since the value cf )\ needed to obtain a POAP solution
is known only after the POAP solution has been found. (This is clear from
the definitions of preferred and almost preferred.) However, if we have a
class @ of problems possessing certain préperties, and the first T-1 sequential
problem can be solved more efficiently when LP has available the values
Kt , t=1,...,T-1 , used to obtain the respective POAP solutions, than otherwise.
The required properties are:

Let Ct € @ be the tth sequential problem of form (2') possessing a

POAP solution.

a) tet T, 87 for C . Then NT #8 where t is the index set
t
{]-2,..-} *
A n n
b) Let x, =xeT, for C_. Then x, ¢ R ¥t and T x_ e R .
t t t t t t
* %
c) If x is preferred for some C, » and if x s optimal for some
¥
Ct. , t'#t, then x is preferred for Ct, Equivalently.
*
¢') There exists a domain S C R" such that if optimal X, € S it is preferred.

d) z is common to Ct , ¥t

e) The distribution of Tt is such that a maximum likelihood estimate of

A exists. This estimate is the mean of Xt over t .




Now we require some assumptiors on LP and on DM . Our recognition of
LP as a linear programming problem solver should be sufficient: we know that
it will read and interpret submitted data without error, that it will produce
an optimal feasible solution with certainty, and that it will yield DM the

results with typographic perfection. As for DM we assume the following:

DM! (Recognition). DM can always recognize an optimal solutions x ¢ S to be

preferred. He can always recognize an optimal soilution x é S to be not

preferred.

DM2 (Direction). Given an optimal solution x € S , let the distance between x

and the closest point in S be d(x,5) . Then DM can specify a vector d
such that d(x + ed, S) < d(x,S) for arbitrarily small ¢ > 0. No
knowledge of any point s ¢ S is assumed.

Using the assumptions DM will be able to direct LP towards S and

terminate if LP produces x ¢ S .

3. The Existence of a Solution.

We define a vector 2% to be weakly undominated if 2z ¢ 2° t in the domain

of z . This definition will enable us to replace the scalar '"minimize' by the

vector ''find weakly undominated" in the vector optimization problem:

(3) Find weakiy undominated z = Qx
subject to Ax = b)

or xelT
X > 0’

where symbols are defined in (1) .

Tllz £ zo” reads ''it is not true that zk < zko , k=l,.000,p &



We can rw find a set of x whichk will solve (3).

min k i
Let 2 be any vector z such that zkmln k §_zk » for any 2z in

the range of x . Then 2" k is weakly undominated. Thus we can produce

p such weakly undominated vectors, each of which is minimal in one component.

How can we produce the inverse images of such zkm'n k ? Consider one such problem:
(4) min z=Q& , xeT

w.r.t. k
Clearly 20 k! # k , can adopt any value and is independent of the minimizing

process. Hence (4) is equivalent to

(5) min 2, = ckx , xeT

which is a linear program. Hence by solving p linear programs of form (5) we
can find p basic feasible solutions to (3), each of which has the minimal
property in a different component. Call a feasible solution to (5) e :

("'Solution'" is hrore used according to the linear programming convention to

mean a value of x at which the objective is minimized. No ambiguity resuits.

Al' solutions are assumed feasible.) Let i {xk*} . From well-known resulis
ke,
X is convex.
Now to dispose of the simplest case:
- - ) e . ke
Theorem 1 (3) has a minimum solution x if and only if Q X" # 0 , and any

point in the nonempty intersection is such a solution.

ek, .. . Jete ko,
Proof Suppose X is a mininum solution to (3). Then 2z = Qx is

N

not only weakly undominated but also a minimum. Hence z <z, xeT.

tat Joate
ot Iy

It follows that Z, 27 k=1,...,p - SO X solves (5) for

e ke
each of the components, and x = x , k=1,...,p . Consequently

Yt U
Wi e o=t e

2 k=
X € Xk for all k , and x ¢ Q X" . Suppose NX  # P . Let



3
x° ¢ ﬂXk’ . Then x° solves (5) for each of the components,
o° = 2° <z,xeT, 2° is a minimum vector and x° solves (3)
. e o . . xk*
to a minimum. x was chosen arbitrarily from NX , so any

]
x° ¢ x K solves (3). ///

Now a minimum solution to (3) seems the best we can hope for, and indeed
will solve (2') provided we can show that it is POAP . Theorem 3 will give us
*
that answer. Meanwhile let us consider the case where ka =f . We have

shown that there is no minimum solution to (3).

Now we have shown that a set ka* of solutions to (3) exists, and we
would like to discover, if possible, a maximal such set from which to select
some preferred or almost preferred x . Also, since we have the simplex method

in mind, we would like to know if we can move from x to a better x' .

* % *
We will show that this maximal set X exists and x ¢ X is a solution

to min A &x , x ¢ T, for some XA >0 . We would like also to be able to
X

specify )\ and thus generate a specific solution. |If the rows of Q are not
positively linearly independent we can find some A% such that onx = 0 for
all x ¢ T ! Legislating this trivial solution out of existence we require:

Positive linear independence of ck » Vit T xkck =0, lk >0=>)2=0
k

We can now construct a closed convex cone Y = { <kQ'> , k >0 , a scalar } ,

. L k % % % \
the minimal cone containing ¢ . Let X = {x I X minimizes ¢ x = zx , XeT,

A kox * A
for some ¢" ¢ Y] . Clearly x ¢ X for all k . Also for any ¢" ¢ Y

*
there exists the corresponding x by the compactness of T .

*Analogously to linear programming we can say that x' s better than x if

2' = ' < Qx =12z



Theorem 2 If there exists x00 é X" , X e T, and z00 = ono ; where Q

is @ matrix of p positively linearly independent rows, the kth

row being ck , there exists zO < z00 (i.e. zko < zk00 , ¥ k)
such that x° € X* .
Proof %0 & X",
zk00 = ckx00 L S S oS
(6) Referring to (5): zk00 = zk* else xOO € Xk* = X* )

k
p hyperplanes ¢ x = zk00 pass thiough xoo . Hence there
X , k 00 . A .
exist p closed hali-<paces ¢ x < zZ) with nonempty intersection
<f , and, by the positive linear independence of ck and the
compactness of T ,<f has an interior. (intf) NT # 0 b5y (6).
It is necessary and sufficient to show that there exists x ¢

(inted) 0 T satisfying xo e X since xo e (int) NT = z0 < zOO
Select a point xO| in (intef) NT . Defined ' = {x'ckx < sz',

vk } . Thenzﬂ,] NTc- (intd) N T . Construct a sequence

xo0 g xm,..xoI such that (intel) 0 T Dcﬁl NTo...-ox'"n1o

=l , T are closed, so<X' N T isclosed. L' nNT isa

decreasing monotone sequence of sets so Vimed! NT = 8 (dﬂ nT)
1
boundary of T , for if not @ smaller set could be found containing

0 3 5 . .
X - X lies on a supporting hyperplane, since X lies on the

points of ~AL and T . The boundary of T is a set of hyperplanes.
0 !
So Xy must lie on at least one.

Construct p -1 other different sequences yielding xk0 (k=1,..,p)

arbitrarily close and lying on the same hyperplane. Either all xko

are different or limel' " T is unique over all sequences. |f
j —0
x‘o = x2O = .. .xko. . .xp0 = x° , for any x>+ Ax ¢ T, 2° + bz > 2°

Hence at x° , z attains a local minimum. By the linearity of the
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space and every objective function, a local minimum is global

¥ 3
x° ¢ Xk (for all k) = X .

If all xko are different we will find o such that
,_ ©
o zk = a constant
190 1
o'l = z , a constant vector
(o] 0 0o
where 2 (zl e o .,zb )
o o o o
Let Zk (zk 3 S )
Then o' (2° - zk°) =0 .

Transposing, and by Farkas' Lemma

(284 zk°) y20,06.y<0 has no solution

°)

therefore (Zo 2 Zk '9 =0, g £ 0 has a solution

0=g' (2°-2° =0 (& - )

[where Xo = (xlo, xzo e .,xpo)
0 0 0 o
X, (xk A )]
= o'ax’ - x %)

. Hence

But (X0 - Xko) isa (p-1) - tuple of vectors in one supporting

0
hyperplane, so v'(X0 - X,

) = 0 is the equation of the byperplane,

v# 0. Therefore Qo =v#0,and ¢#0.0%0,a%0=0>0.

0 - . . .
Now ¢o'Z =2 implies that at each xko is attained the value

Z=o'QX , a constant on the boundary hyperplane; therefore at

0
Xy

also global. 'Q is a semipositive linear combination of ¢

o'Qe vV . Consequently xk0 e X .

from the conditions of Theorem 2 falls out that

Corollary 1 X" is the set of all solutions to (2'")

9 !,

Proof Y© = {xwlx“ minimizes ¢'x = 2, for any A eY , xeT}

is attained a local minimum. By the previous argument it is

, hence

/1/



1

By the convexity of Y , ck =5 kkck where ck is an extremé ray of
Y and lk ST Zlk = O Butk ck are the independent rows of Q ,
so ¢ = ; xkck where kk' =0 if ck is dependent. So x*

k=1
minimizes AQx , X\ 50 x* also minimizes a)\Qx where a is a
scalar > 0 . Let a = ————%r-———- » and x* is a solution to (2'')

'k

Hence X" is the set of all solutions to (2'') . ///

U

We have now found X , the set cf all solutions to (2'') . We show that
(2'') then is equivalent to (3) and a search for a weakly undominated z replaced

by a simple linear program. Let Z be the set of all weakly undominated Z

Corollarx 2 X ¢ XK if and only if 2z ¢ Z .

ate

Proof Suppose x ¢ X . Then either

(i) at least one component of 2z is minimal. Then 2 is weakly

undominated; or

(ii) 'z is minimal for some « > 0 . Suppose there exists some

0 0
z <2z . Then o'z < o'z which contradicts the hypothesis.

ots

Suppose 2z ¢ Z . Then 1z < z00 ¢Z and x ¢ X by Theorem 2. ///

s

Thus far we have produced a set of solutions X |, each element of which is

equally satisfactory. The choice will be rarrowed by restricting (or attempting

to restrict) x to a preferred set S . Now that we know that the search for

X € S can be done by linear programming techniques we must assume:

o

1

LP1 (Finiteness). Let x ¢ X" be an optimal solution. Then x° ¢ X , another

optimal solution, can be produced in a finite number of steps.

L, X" and the Preferred Set

In Section 2 we have assumed the existence of a preferred set S . We also
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constructed an interaction between DM and LP , whereby LP proposes optimal
solutions to a linear program, and DM accepts them or tries to steer them
towards S (assumptions DM! , DM2 ). In Section 3 we showed that the set of
points that LP can propose is indeed that set of points from which DM wishes

to select a preferred point. Now what about § ?

In this paper we choose not to make any assumptions on S . Such assumptions
would involve economic concepts such as insatiability of preferences, convexity
of preferences, etc., which are not appropriate here. However, it is important
to grasp that <lthough LP has a linear objective, to find some x ¢ X-"r , DM
has no such thing. Now suppose that we have a set X* obtained from solving

(2'') or from solving (3), we will show that a complete solution to (2') exists.

Before proving the next theorem we require a lemma:

% £
Lemma X =X>Nbdry T
Comment We proved in Theorem 2 that Xi: bdry T . We now require that

.

X~ be simply connected over the boundary i.e. that there be no

holes. In Theorem 3 we will have sequences of solutions starting

L. ot
"

in X" and ending in X . These sequences must stay in X

Proof Let x° e bdry T . Then

(A) x° = % TPR P where [i} is the index set of all extreme points

of T contained in the supporting hyperplane containing x , and

*w
Let x ¢ <X > . Then

o * b . - :
(B) x =% Aj xj . where {j}1 is the index set of all extreme points
¥
of T in X , and xj >0 . % xj =1
But the extreme point representation of any x ¢ T is unique, and

”\‘ . .
if x°¢<X>Nbdry T then if My > U T Similarly



13

if Xk > 0, xk DR Thus the extreme points of (A) are the

ots .
v

4 "\
same as those of (B) and x° = % by X, - Butall x, i fi}

(¢}
minimize o Qx for some o . Hence x also minimizes o Qx ,

oo ot

o

2 o ¥ o ¥ o
and x ¢ X . Suppose x ¢ X . Then x ¢ <X > and x ¢bdry T .

o 4 o o
So X g¢<X> Nbdry T and X = <X >N bdry T . ///

Theorem 3 will show under what conditions a preferred solution can be found.
The effects of pathological circumstances, those in which the linear program

and the decision maker are opposed, will become clear.

The lemma has shown that X is a simply connected part of the boundary
of T , intuitively a partly open convex set without an interior, |f then we
required conditions for a preferred solution tc be produced, it would seem
immediate that would suffice first'y: convexity of S , and secondly:
X* NS# P . However Figure ! shows a case where these conditions are insufficient.
Using the decision makers axioms, and starting from the left of the Figure, almost
preferred solutions are encountered twice, at X and at X, before a preferred
solution is reached at x3 . Clearly the choice between Xy x2 , or x3 is
determined by the original trial solution and the direction of search. The

situation is pathological because we do not expect a decision maker to be satisfied

with a solution that is nonoptinal.
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Even if the diagram is less pathological (Fig.2) there is still and almost
preferred solution at X, The third condition on S which will guarantee

a preferred solucion is that the asymptotic cone of S, A (S) , contains Y

Fig. 2.

This implies insatiability of preferences in the direction of every possible
optimizing vector (Fig.3). That it is insufficient merely to have nonempty
intersection of the cones is shown in Fig. 4 , where there is an almost preferred

solution at x It is evident that these ihree conditions are not necessary

5 °

for a preferred solution - merely sufficient.
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Theorem 3

Proof

(i)
(iii)

Let X be the set of solutions to (3). Let x° e X* be

any such solution. Then
If S is convex, X "S # 6 and Y c A(S) a preferred x

can be produced.

9

If X NS =0 an almost preferred x can be produced.
Otherwise, either a preferred or an almost preferred x can

be produced.

Suppose x° &S . The vector d' can be specified by DM2 ,

and k' >0 is a scalar. Let x° + kodo e S be the closest

= *
point of S to x° . f x° o+ kodo £ X et x‘ be the

*
closest point of X to XX+ K°d° . af X%+ kodo e X

let x‘ = x% + Kk°%° . Suppose x‘ é S . By the convexity

of S there exists a unique point R0+ k]dl e § which
is the closest point of § to x . |If x' + k]dl =x%+ kd
a hyperplane separating X* from S could be defined, for

by the lemma X* is a simply connected subset of a convex

body either wholly contained in S or closed with respec:t

to S since Y € A(S) . Hence the points x' + k' d are

- —
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(i)

(iii)

not in T . Also d(x‘ + k]d‘, x‘) < d(x', x° + k%%
< d(x° + k% °, X9 . Consequently a sequence of pairs

JoLER k"]d"]) for i > 1 can be defined. Suppose

i Pd-
x €S . Then the sequence is countable and d(x', x' s

(xi, X

k"'d"‘) is strictly decreasing. Hence lim x' ¢ §
{—o

*
and some x°° arbitrarily close to the limit is in X NS .

% . .
Llet x = x' if xI eSS, or xoo otherwise. Then by

*
LP1 x can be produced in a finite number of iterations,

and by DMl it is recognized as preferred.

Let x' + k'd' be defined as in case (i). Construct a

i-1 I-]dl-]).

v 1 i : !
similar sequence (x , x + k Since there is

*
no convexity assumption on S and since X NS =0 ,
k k k k+1 + k+1 k+1

there may be some x + kd = x k' 'd . This

implies that xk = xk+‘ S ee= xk+' =.ee, i 21 . Let
+i

xko = xk = xk+‘ =] xk ' =is:l g If xko does not

o Sr
Rl k' ]d' ‘) is a sequence strictly

exist then d(xi, X
decreasing to some limiteX > 0 . As d approaches L, A
approaches some limit x%° since X* is bounded. Let
x* = xko or x°° whichever is defined. Then by LPI x*
can be produced in a finite number of steps, and by DMl
it is recognized to be not nreferred.
This case follows case (ii) except that either
a) X! e S or
b) A= may occur since X“Ns #8 . Referring to

case (i) , if either a) or b) occurs a preferred

solution is the outcome; otherwise, as in case (ii)

the solution is almost preferred. ///
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The converse to Theorem 3 is trivial:

Corollary 3 If a solution to (2') exists then it is some x e X .

Before attacking the method of solution proposed in Section 5, the reader
is cautioned to recall that any x ¢ X is a solution to (2'') , given the
appropriate A . However, the simplex method produces only extreme point
solutions! If S contains an extreme point LP will find it, but if S contains
no ex reme point and S N X* # @ the simplex method will have LP oscillating

across S indefinitely. Clearly DM must take some linear combination of

extreme points himself in this case.

5. The Method of Solution

If we accept the assumptions and conditions on T ,S ,Q, OM , and LP
so far discussed we have shown that a solution x POAP can indeed be found.
Without loss of generality we can restrict ourselves to the case in which S
contains an extreme point of T . If S does not contain an extreme point DM
can terminate when by DM2 he must reverse direction; and if an almost preferred
solution is produced DM can terminate when LP can propose no solution in

the direction specified.

By solving (2') we are trying to define an optimum in terms of the decision
maker's preference, and then to find a function which will yield this optimum,
rather than to find an optimizing function and insist that the decision-maker
like it. We are granting him intuition and knowledge that he has withheld from
the computer, unwittingly or otherwise--after all, it was this intuition and

knowledge that made him a decision maker in the first place.

Why then bother with \ at all? A very simple approach could be select
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. 1 " : ; . : .
any extreme point x , rejecting it and selecting x2 and some direction

of improvement g such that d](x2 - x‘) > 0 , and continuing until no

n+1
x such that dn(xn+] - x") >0 can be found. Then x" is clearly optimal

by the convexity of T .

If we follow this approach, though, we find that the solution to the tth

sequential problem is a lengthy in computation and as tedious and demanding

on the decision maker as the first problem, even though the solutions may be
very close. For example; in January a manufacturer or automobiles decides,
after investigating many extreme point solution, that it is preferred to

produce 700 Rolls Royces and 40O Bentleys. Now in February he notices that
management policy remains the same and that all his unit costs and unit profits
are in the same proportion. Consequently, he decides that rather than reinvestigating
all the extreme points anew he will again select x‘ = (700,&00) .  However,

he discovers very quickly that either xl is infeasible for February, or that

it is not optimal: he could find some better x2 which is preferred. He
realizes that conditions (a) through (e) of Section 2 hold. He sees that the
January problem could have been solved by (2') for some i , and if he knew
2%, (2') wusing 2° and T for February would offer him a solution close to
xl that would be both feasible and optimal. Further reflection, and an
understanding of linear programming, tells him that in general 2% s a point

in a closed convex set A and any XAeA would have solved the January problem.
Also, calling A in January Ay s there must be some AZ for February, and it
is irmediate that A‘ and A, are not necessarily equal. It would be folly

to select arbitrarily l‘ from A] and to hope that kl would also be in A2 s
But now he recalls condition (e) which tells him that there is some X which

is most likely to be in the intersection of many of the At , and that X
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is the mean of all successful lt to date.

We can find a way to estimate X . Suppose we are solving the first
sequential problem. We start with x: , an arbitrary estimate of A\ , and

1 5 S it
produce an x which minimizes x:Qx . Suppose x] is not POAP. We modify
1 2 R
K] to XI and produce an x2 which minimizes X?Qx . « « until x ! which
n
5 5T 1 ;
minimizes X‘ Qx is POAP . When we solve the second problem clearly the
n

best value of A with which to begin is l] ! , since all the sequential

problems are of the same class. |If then the solution to the second problem is
n n n
attained using XZ , we will begin the third problem using K; = %(Xl L kz 2)
th 1 1. B
Similarly the t+] problem would be entered using kt+1 =3 E 3 ™ Xt .

i=1

(1f we were to waive the assumption of time invariance of S the mean X
- - 1
might be a weighted mean.) As t becomes large )t approaches \ in Cesaro

limit, and % is the maximum likelihood estimate of A which will minimize

AQx and produce a POAP x .

Consider the t+1th sequential problem. The first solution offered x‘ ,

minimizes Xth over T Henceforth the subscript on X will be dropped

t+]
1
where no ambiguity can result. |If x is preferred the problem is solved and

A remains unchanged for the t+2th problem. If x] is not preferred, xz such

that d](x2 - x‘) > 0 is to be found.

6. The Generation of x'+]

The problem to which x' is the solution, using A, s

Subject to Ax =b
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Rearranging columns so that the first m cclumns are the basis Bi we have

where subscript B corresponds to basic variables and subscript C corresponds

to nonbasic variables. The solution x' is found by premultiplying both sides by

Bi" 0
; -1 yielding
-AQ B 1
i
s _ - _ 1
. [
i i -1 = )
g MO M Qg BiC X z-h'Q B-1b
i i i ] i ! i i

= (Bi"b o) .

Now suppose that DM specifies direction vector d = (dB. , dC.) . That is to
say that d(xi+] -xi) > 0 can be considered an additiona; cons;raint to the
problem. Of course, if we were to try to resolve the problem using this constraint
we would succeed merely in shifting xi an infinitesimal distance in the required
direction; but we will use the constraint to determine which variables can enter

. i+1
the basis (Bi+l) for x .

There is no further need to maintain the iteration affix (i) everywhere,

since henceforth the analysis will be based on solution x' . We rewrite (7):

(7') | B"c xB e"b

0 x(oc-QB B"c) Xc z-AQﬁB-lb
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. i+
Theorem 4 If a solution x' ] exists x° will enter the basis (Bi+l) for
i+] . =
x' only if dg -dBB ]Ce > 0 , where e denotes a column of C .
Proof Rewrite d(x'+]-x') > 0

- .
as dx' ‘ > dx'.

we have x' = (B-lb,O); yielding

dx - s = dBB']b + ¢ (e>0) , where s is a nonnegative slack variable.

Add the constraint into (7') , yielding

8 -~ _] =)
(8) I B C 0 Xg 51
) -1
dg - xc - dgB”'bre
o x(QC-QBB"c) 0] s z-xQBB"b

Reducing (8 to canonical form by premultiplying both sides by

1 0 0
-dB 1 0 we have
0 0 1

- -] - - r- -] A

(9) 1 B™'C 0 (g B™'b
0 d.-d B"c ] i
c™'B } %G €
| 0 ’-(Qc' OBB"C) 0 [ s Lz-xQBB"b_

The m*] row of the system (second row of the matrix (9)) is infeasible since
the value of the nonnegative slack s is -¢ , (¢>0) . To restore feasibility

x* must enter the basis with positive value; hence d: = dBB-]Ce > 0. ///
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- 14
Corollary 4 If dg - dBB lCe <0 for all e=mtl,...,n then no feasible x' ‘
can be found that will minimize (2') subject to d(x'+]-x') >0.

So corollary 4 can be the criterion by which the decision maker determines

x to be almost preferred and terminates.

Now suppose that some x% can be found to enter Bi+l . As € increases

e . ) . .
so does x until some x ,c£=|,...,m , is reduced to zero and is driven out

of the basis.

x' is the solution to (2'') using a given A' . Since we are going to modify

g - .
' to produce our next solution x' ] , we must have some properties of A\ .

P
Let A= {A[320, k}=:l A=)

C
Let xv be some value of )\ such that xp minimizes vax , xueX .

- . [ "‘- .
Let A, = {)\Ixu minimizes AQx , Xuex J % lVeAv

Th Th b f disti is finite. i 1 :
eorem 5 e number o istinct Av is finite Av is closed and convex
A= UA . No A is disjoint.
V) v
v
Proof Suppose xu is an extreme point of T . The number of extreme

points is finite. Suppose xu is not an extreme point, i.e.,

X is a linear combination of extreme points. From the proof of
Theorem 2, given a linear combination of extreme points xu
supporting T , (Zeuxu , Buép , Xsu=l) , the set of o as defined
in Theorem 2 is independent of the positive weights (au) in the
combination. The number of combinations of xu with positive Bu

is finite. 2= TTgTT yields the same minimizer as ¢ . Suppose
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XIQX is minimized by xu and lex is also minimized by x .

U
Let k] and 12 eAv , X]Q =y XZQFCZ . It is a well-known
result that [q cy * K=z cz]x is also minimized by xu , where
0 <o < 1. Hence [qx] + (l-m)kszx is minimized by xu and

Av is convex. Suppose the sequence x]Qx > AzQx,...,xth....

is minimized by x , where X\, , )\ .,xt,...ﬁx yoA
i

l 2 sy e ] ,)\2"..

XyeeosC Xy00. S minimized by x

’\ °€Av . Then ¢ 9 PeaCy

X , C

(o ]

1 f c‘ g1t aCine

both T and z = ¢cx are closed. Hence A\ is closed.
v

5 G ..—~c then c¢x is minimized by x since
n

From the definitions A <~ A . Suppose there exists some
v

Nar /\ﬂ(UAV)C .

Then no xu is minimized by XOQx » which
v

contradicts the compactness of T . Suppose some Av is disjoint.

Then A ~ Av is not closed; but the union of closed sets is closed.///

Suppose that Ki is an element of Av . We must find some )\e:/\\)I which
will generate xi+] subject to the conditions of Theorem 4. We know that
% is the most likely value to use to achieve our aim, but we also know that
X will not work because we have already tried it. Consequently, we try some

reh , such that lll-fll is minimized, considering only those ) which
v

i+] . .
generate x' subject to the constraints of Theorem L.

Let us formalize the conditions on the new ) . Let E be the set of
columns of C satisfying the conditions of Theorem 4. For notational simplicity
we drop the superscript of ) ; where no affix exists we refer only to the new
A that we are seeking. Suppose that we can generate xi using leAv. . Then
the canonical set of equations is still (7'), although the value of ) is not

identical. Let the value of »' used to generate x originally be in Av
i |

What can we say from this? Firstly, the solution is x since x=(B- b,0) .
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Secondly, since x' s optimal x(Qc-QBB-‘C)>O . Thirdly, XeA . But from
- Vv
Theorem 5 we know that there exists some XeAVﬂAv. . Consequently, this

choice of A from AvﬂAv, is possible and justified. We can say then that

(10) A(Qg-0,B™'€)>0

and also (a) that there is at least one equality in the first row of (10),

and further (b) that equality corresponds to a column in E . In addition we
have an objective -- to minimize z(xk-xk)? . So we have something that looks
like a quadratic program. From the optimality properties of x it is clear

that there is a one to one correspondence between the columns of C and the rows
of (10). It follows that if column j is in E then row | of the first

line of (10) is eligible for equality. For simplicity of notation we will

write that row j is in E .

Let us simplify (10) into a quadratic program by removing the additional

constraints, (a) and (b):

r - 2

(1) min X(kk-Xk)
subject to RA<O

A>0

Zkk=‘

where R = -(QC-QBB']C)

By inspection the optimal solution is A=\ , the point from which we started.

. . . . . . P
The constraint set has an interesting geometrical interpretation. In R all
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solutiors A lie on the intersection of the hyperplane Zkk=l and the nonnegative
orthant. A solution tc (10) is found when a point A lies on one of the
admissible feasible RA=0 (row ¢ E) while remaining as close to % as possible.
If no such point can be found then case (ii) of Theorem 3 holds. If A lies

on the axis of the orthant a solution (in general) does not exist there since
AvﬁAv. is not necessary at the boundary of A , hence a change of basis in (7)

does not occur.

We set up the system of equations to solve (11) by Wolfe's method of
quadratic programming, addino slack variables o>C , multipliers ©m and

complementary slack variables v , complementary to (\,o) :

—~ N ( 7 -
(12) R I 0 0 0 0 A 0

1 0 0 0 0 0 ol =11

=211 0 -R' -1 1 0 m -2

0 o -1 0 0 L | V] | 0 ]

The matrix contains 2(n-m)+p+1 rows and 3(n-m)+2p+1 columns. We have
already established that there exists a solution in nonnegative X , o,
unrestricted 7w and zero v which is optimal both a fortiori and by the Wolfe
optimality criterion of (A,0)'v= 0 . Hence by Gauss-Jordan elimination or
simplex phase 1 we make the first n-m+k columns basic, and immediately obtain

the tableau corresponding to the solution x=i

-—

1 Yl,s+l s L B - Yl,s+n-m+p B]

2

(13) B
] Ys,;+l R R A P Bz
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where s=2(n-m)+p+l

1 -

B are nonnegative values of A\
2 .

B~ are nonnegative values of ¢

g3

are unrestricted values of m

7. The Computation of )

We recall in (11) that it is sufficient for one inequality to be an
equation, provided its row ¢ E , to yield a solution for A . Suppose row
jeE , nd the jth inequality of (10) is an equation. Then o; = 0 and

vp+j enters the basis. From the last row of (12):

o. and Vp+j cannot simultaneously be in the basis hence the pivot operation

entering v and expelling o must be on vy From Kuhn-Tucker theory

pti, s+p+tj
we obtain that the multipliers TU are nonpositive, hence vp+j <0 (since

the solution will be nonoptimal with respect to the Wolfe algorithm). Since

oj20 before the pivot and vp+j <0 after the pivot

Yprj,seprj < O

From the arithmetic of pivot operations, referring to (13)

Y .
B, - B, - SRt Bp+j
Yptj,s+pt]
Y +'l +1
82+., = B§+., .. P2l 5'PT BZ+. where j'# j
p J v J Yp+j )S+p+j p J
2
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To maintain feasibility 0

A
w
A

and 0

IN
o
N x —

We have thus found the conditions by which qj may leave the basis.

The steps are:

1) Identify jeE

2) Elimina*e > Yot >0

3) Eliminate j»B <0 or 8 >

L) Eliminate j» B, < 0, j'# j

Those that survive the test arc feasible and we wish to minimize the
deviation from % . It is sufficient to minimize Z!Xk-xkl since the expression

is monotone with respect to Z(\k—xk)z

We have found values of ) , if they exist, which will make a new basis
in (11) as desired as the current basis. In order to precipitate the change we
replace )\ by x+e(x-xi) where ¢ is small and positive. Clearly e(x-xi)
sums to zero. Now suppose another iteration is required. XA computed on
the first iteration becomes )i+] and a new value of )\ is desired. R will
of course be different since it is derived from the xi . We follow the exact
procedure as in the first iteration, forcing a basic solution in the first
n-m+p columns. This will not be optimal since A is excluded from the constraint
set. Consequently thcre will be at least one value of o <0 . Again using

Theorem 4 we find that value of v , if any, which satisfies the conditions for

pivoting.

8. Termination

There are three ways of terminating the procedure.
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Case |. The decision maker accepts x produced by minimizing anx . Then

- - n
xt+l = (txt + xt+])/(t+l)

Case l1. The program can find no v to bring into the basis which satisfies
the pivoting rules. Then case ii of Theorem 3 applies and the last x is the

best that can be provided.

- - = n
Neap = (O +)/ (e41)

as in case |.

Case 1ll. The decision maker causes cycling between a number > 2 of solutions.

This implies that S does not contain an extreme point and the decision maker

must interpolate points of the cycle £ .

- - n
Keor = (txt + E Aeay ! [1el])/(t+1)

9. Numerical Example see figure 5.

A very simple example is illustrated:

A constraint set Tt CCtC@

<h

-x‘ + 2x2

x, + l/2x2 <6

]

yielding a minimum at (4,4) under

V= K= (1/72,1/72)

The t+1 sequential problem contains Tt+l c Ct+]



The optimal solution is:

-

I 0 0 1/5 2/5

o

0 1 0 2/5 -1/5

0 0

—

-3/5 L/s

0 0 0 3/10  1/10

producing x = (14/5, 8/5) which is not in

and write ¢, = X, > 8/5 .

e -1.e
We compute dc - dBB c for Xy,

d“ = dBB"c“ =0-[01 0)

& - dBB"c5 =0-[010]

Only x,_. is permitted to enter the basis.

5
We calculate QBB-‘C - Q

= -1 0 0
0 -1 0
= -1/5 -2/5
-2/5 1/5

p— -

14/5
8/5
18/5

[11/5]

29

S . We wish to increase at least

and x

[ 1/57
2/5
| -3/5

" 2/5
-1/5

-b/SJ

1/5
2/5 -
-3/5

2/5
1/5
L/5

-2/5

1/5

b 3

2
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We add slacks o > 0 yielding (11)

min (0% + 0,5’

subject to -1/5 -2/5 1 0 ’x; 0
-2/5 1/5 0 1 M= o
| | 0 0 o, 1

%

- -

We have seen that only x_ can enter the next basis. x5 is the second

5
column of C , so E = {2} . We reach the tableau (13); showing Yij and the

RHS:
1 -1/L 1/4 1/20 -3/20 By (172 ]
1/4 -1/4 -1/20 3/20 o 1/2
1/20  -1/20 -1/100  3/100 n 3/10
-3/20  3/20 3/100 -9/100 v ] 1/10
0 0 <1 0 0
0 0 0 ] 0
] - -5 -3/10 -1/10 ) Lo J

P=2 , j=2 so we inspect vy, ;| = -9/100
So far a pivot is feasible.
1

B = ) -3/20 1/10 1 . 10 -3/290 _ 1/3
9/100 ) |1 3

3/20 3/29 2/3

(S

(S

82 = 3/10 - (3/100)(-10/9) = 1/3
So A2 = (1/3 - e/6 , 2/3 + ¢/6)
We re-enter the primal problem with objective min ((-1/3 + e/6x]+(-2/3-e/6)x2)

and obtain x = (1,5/2)eS .
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t+1
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